Adaptive Micro Systems LLC

AlphaEclipse 2500/2600 Sign Installation Manual

STEP 1: Read Safety section before starting, see page 4

STEP 2: Mechanical installation, see page 6

STEP 3: How many signs are installed?
ONE SIGN

- Go to STEP 4.

STEP 3a: Must all signs display the same message at the same time?

YES
All signs must be the same size.

- If two signs are mounted back-to-back, follow directions on page 10. Then go to STEP 4.
- If not, see page 14. Then go to STEP 4.

NO

- If two signs are mounted back-to-back, follow directions on page 12. Then go to STEP 4.
- If not, see page 16. Then go to STEP 4.

STEP 4: How will messages be sent from a computer to the sign(s)?

Method	Directions
WIRED (RS232)	• Follow directions on page 18. Then go to STEP 5.
WIRED (RS485)	• Follow directions on page 19. Then go to STEP 5.
FIBER OPTIC	• Follow directions on page 20. Then go to STEP 5.
ETHERNET	• Follow directions on page 21. Then go to STEP 5.
MODEM	• Follow directions on page 22. Then go to STEP 5.
WIRELESS	• Follow directions on page 23. Then go to STEP 5.
EXTERNAL CONNECTION BOX	• Follow directions on page 24. Then go to STEP 5.

STEP 5: Electrical installation, page 25

STEP 6: Use AlphaNET v2.0.3 or greater software to send messages to the sign(s)

Contents

Safety 4
Mechanical installation 6
Sign-to-sign connections
Back-to-back Master/Slave sign connection 10
Back-to-back Master/Master sign connection 12
Multiple Master/Slave sign connection 14
Multiple Master/Master signs 16
Computer-to-sign connections
Wired (RS232) computer-to-sign connection 18
Wired (RS485) computer-to-sign connection 19
Fiber optic computer-to-sign connection 20
Ethernet computer-to-sign connection 21
Modem computer-to-sign connection 22
Wireless computer-to-sign connection 23
External connection box computer-to-sign connection 24
Electrical installation 25
Appendix 27
Appendix A: Sign description 27
Outside view 27
Inside view 28
Appendix B: Equipment identification 30
Appendix C: Networking signs 31
Computer-to-sign communication methods 31
Sign-to-sign communication methods 32
Sign network design 33
Appendix D: Opening and closing the sign 34
Appendix E: Sign options 37
Temperature probe option 37
Modem option 38
Wireless transceiver option 39
Fiber optic modem option 41
Appendix F: Termination 43
Location of termination DIP switches 43
How to set the termination DIP switches 43
Appendix G: DIP switch settings 45
DIP switch locations45
Sign operation settings (Bank 1 and Bank 2 DIP switches) 46
Sign size settings (Bank 3 DIP switches) 47
Using AlphaNET software to set DIP switches. 48
Appendix H: Sign Specifications 49
EMI compliance 49
Temperature protection 49
Technical specifications 50
Appendix I: Using an IR Message Loader or a computer with an external connection box 52
IR Message Loader with an external connection box 52
Computer with an external connection box 52
Appendix J: Controller board 53

Safety

Equipment symbols

Warnings and cautions

Other warnings and cautions are posted in appropriate locations throughout this manual.

Battery backup

In the event of a power loss, backup batteries in an AlphaEclipse sign provide short-term power in order to retain information such as messages and time settings.

Backup batteries are soldered to the Controller board and should not be replaced by anyone other than a qualified Adaptive technician.

	A WARNING
	Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions. smioise-En

This equipment contains components that may be damaged by "static electricity", or electrostatic discharge. To prevent this from happening, be sure to follow the guidelines in Adaptive Tech Memo 00-0005, "Preventing Electrostatic Discharge (ESD) Damage," available on our Web site at http:/ /www.adaptivedisplays.com.

Changing from Master/Slave to Master/Master operation

Master/Slave sign operation (see page 10 and page 14) - in this mode, a message will be displayed on all the signs at the same time. Also, in this mode, there is just one Master sign, but there can be multiple Slave signs. Messages are sent to the Master sign using a wire, modem, or wireless connection. Then these messages are sent and displayed on all the Slave signs (plus the Master sign) at the same time.

Master/Master sign operation (see page 12 and page 16) - in this mode, each sign can display a different message. However, a message cannot be displayed simultaneously on all the signs.

Signs are configured for Master/Slave mode by:

1. wiring a RS485 connection to each sign's SERIAL I/O connector (also called the Serial I/O terminal block, see "Appendix A: Sign description" on page 27),
2. wiring a RS485 connection to each sign's TEMP/SYNC PORT connector,
3. setting each sign's Master/Slave DIP switch, depending if the sign is operating as a Master or a Slave. The DIP switches on a sign can be set by either:

- opening a sign and then physically setting the DIP switches (see "Appendix G: DIP switch settings" on page 45)
- using AlphaNET v2.0.3 or greater Diagnostics software (see the AlphaNET User Manual available on Adaptive's Web site).

Signs set up as Master/Slave units as described above can not be changed to Master/Master operation by just changing a sign's DIP switches (\#3 above). In fact, doing so could damage a sign.

To change Master/Slave signs to Master/Master units, use the directions below:

- "Back-to-back Master/Master sign connection" on page 12 or
- "Multiple Master/Master signs" on page 16.

Mechanical installation

Designing the support structure

The design of the support structure depends on the mounting methods, sign size, sign weight, and wind loading. Support structure design should only be done by a qualified individual.

It is the customer's responsibility to ensure that the support structure and sign mounting hardware are capable of supporting the sign and are in compliance with all applicable building codes.

Adaptive Micro Systems is not responsible for installations or the structural integrity of support structures done by others.

Lifting the sign

Use the two eyebolts on the sign with a lifting bar to raise the display:

RIGHT WAY
TO LIFT SIGN

WRONG WAY
TO LIFT SIGN

Mounting the sign

Because every installation site is unique, there is no single, Adaptive-approved procedure for mounting an AlphaEclipse sign.

However, follow these guidelines when installing a sign:

- Consult with a professional sign installer to determine the proper mounting system and to comply with all applicable building codes.
- Only use the sign's mounting support brackets to mount the sign. Mounting to any other parts of the sign will void the warranty.
- All top and bottom mounting support brackets should be used to mount the sign.
- Drill holes as needed in the sign's mounting support brackets for fasteners. Drilling holes in any other place on the sign will void the warranty. Follow these guidelines when drilling holes in the mounting support brackets:
- Drill the minimum number of holes necessary.
- The distance from the center line of a mounting bolt to the outside edge of a mounting support bracket should not be less than two times the diameter of the fasteners.
- To prevent bi-metal corrosion, dissimilar material should be isolated when mounting the sign.
- If the sign is mounted to a solid surface like a wall, nothing should block the space between the top, bottom, and sides of the sign and the solid surface. If there is an obstruction (as in a monument-style installation), then run ductwork (not supplied) from the bottom of each fan cover to the side edge of the sign. Do not run ductwork to the top of the sign as rain or other material could enter the sign. Do not run the ductwork to the bottom of the sign as this could force exhaust air back into the sign.
- Allow fan clearance as shown below:

Lifting bolt
Only use eyebolt for lifting, not for mounting sign._ Mounting support bracket (upper)

Fan cover

For adequate air circulation, allow at least 3 inches of clearance below the fan covers and the fresh air intakes at bottom of the sign.

For monument-type installations where the sign is enclosed, the fan covers and fresh air intakes should be ducted so that exhaust air is not recirculated into the fresh air intakes. If this is not done, the sign could overheat and shut down.

Adaptive recommends isolating the fresh air intakes from the exhaust fans.

The mounting support brackets and eyebolts are steel.

Stainless steel bolts are used to attach the mounting support brackets to the sign.

The sign case is aluminum.

Fresh air intakes
Figure 1: Mounting an AlphaEclipse 2500/2600 sign

Mounting a temperature probe

See "Appendix E: Sign options" on page 37.

Installation diagram

Figure 2: AlphaEclipse installation diagram - Part 1

$$	$\left\|\begin{array}{c} 0 \\ \infty \\ 0 \\ 9 \end{array}\right\|$	\bigcirc	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 7 \end{array}\right\|$	$\begin{array}{c\|c} 0 \\ \infty \\ \infty & \infty \\ \end{array}$	$\underset{\sim}{\infty}$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{N} \\ & \underset{N}{2} \end{aligned}\right.$	$\begin{array}{c\|c} \infty & 0 \\ \stackrel{1}{\sim} & \underset{m}{2} \end{array}$	$\begin{array}{lll} 0 \\ \underset{m}{2} & \mathbf{m} \end{array}$	$\begin{array}{l\|l} 0 \\ \text { Mi } & \mathbf{m} \\ \hline \end{array}$	$\begin{aligned} & N \\ & \dot{Q} \end{aligned}$	$\left.\begin{gathered} N \\ \dot{q} \end{gathered} \right\rvert\,$	$\begin{aligned} & N \\ & \dot{q} \\ & \hline \end{aligned}$	$\begin{gathered} N \\ \dot{y} \\ \hline \end{gathered}$	$\stackrel{+}{\square}$	$\stackrel{\rightharpoonup}{\dot{f}}$		$\stackrel{\ddots}{\dot{子}}$	앛	$\left\|\begin{array}{l} 0 \\ i \end{array}\right\|$	$\begin{aligned} & 0 \\ & i \end{aligned}$	$\left\|\begin{array}{l} 0 \\ i \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \dot{8} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \dot{8} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \bullet \\ & \dot{e} \end{aligned}$	$\left\|\begin{array}{l} n \\ 0 \\ q \end{array}\right\|$	$\begin{aligned} & n \\ & \dot{O} \end{aligned}$	N	N	¢	$\begin{aligned} & \infty \\ & \dot{子} \\ & \hline \end{aligned}$	$\dot{\infty}$	$\left\|\begin{array}{l} \infty \\ \dot{子} \end{array}\right\|$	$\underset{\sim}{\circ}$		$\stackrel{+}{\circ}$
$\begin{array}{\|l\|} \hline 0 \\ =0 \\ \sum_{i}^{\prime} \\ 0 \end{array}$	$\stackrel{+}{\sim}$	으N	\mid	$\begin{array}{c\|c} \circ \\ & \stackrel{O}{寸} \\ & \dot{-} \end{array}$	$\left\|\begin{array}{c} 0 \\ \underset{寸}{\dot{~}} \\ -1 \end{array}\right\|$		$\begin{array}{\|c\|c} \circ & 0 \\ \underset{\sim}{\dot{j}} & \dot{\sim} \\ \underset{\sim}{2} \end{array}$	$\begin{array}{l\|l} \circ \\ \stackrel{\circ}{N} \\ \dot{N} \end{array}$	$\begin{array}{l\|l} 0 & 0 \\ \dot{N} & \dot{N} \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \sim \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \sim \end{aligned}\right.$	$\left\|\begin{array}{l} \infty \\ \infty \\ 0 \\ \sim \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{e} \\ & \mathrm{~m} \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \dot{0} \\ \dot{e} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \dot{0} \\ & \mathrm{e} \end{aligned}\right.$	$\stackrel{\circ}{\circ}$	$\left\lvert\, \begin{aligned} & 0 \\ & \dot{0} \\ & \text { in } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ \dot{0} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \underset{N}{2} \\ \stackrel{1}{1} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \underset{\sim}{0} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{gathered} \circ \\ \underset{\sim}{n} \\ \stackrel{1}{2} \end{gathered}$	$\begin{aligned} & \underset{\sim}{2} \\ & \vdots \\ & \underset{-}{2} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \infty \\ 0 \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \sim \end{aligned}\right.$	－	$\begin{gathered} 0 \\ \infty \\ \infty \\ \sim \end{gathered}$	¢	$\begin{aligned} & \circ \\ & \underset{\sim}{\circ} \\ & 0 \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{2} \\ \infty \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{O} \\ \infty \\ \infty \\ \hline \end{array}\right\|$	$\begin{gathered} 0 \\ 0 \\ \infty \\ \underset{y}{0} \end{gathered}$		¢
$\begin{aligned} & = \\ & =2 \\ & \sum_{i=1}^{n} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{N}{2} \\ \underset{子}{2} \end{gathered}\right.$	¢	$\left\lvert\, \begin{gathered} 8 \\ i \\ N \end{gathered}\right.$	$$	8 \vdots i	$\begin{aligned} & 8 \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{c\|c} \circ & \stackrel{\rightharpoonup}{+} \\ \dot{\infty} & \underset{~}{\circ} \end{array}$		$\begin{array}{c\|c} 8 & 8 \\ \stackrel{y}{\sim} & \dot{\circ} \\ \hline \end{array}$	$\begin{gathered} \underset{N}{n} \\ \dot{\ominus} \end{gathered}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & \stackrel{5}{5} \end{aligned} \right\rvert\,$	$\begin{aligned} & 8 \\ & \stackrel{y}{2} \\ & N \end{aligned}$	$\left\lvert\, \begin{aligned} & \dot{f} \\ & \dot{0} \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{c} \underset{N}{n} \\ \underset{\triangleleft}{2} \end{array}\right\|$	$\left.\begin{gathered} 0 \\ \dot{0} \\ \dot{5} \end{gathered} \right\rvert\,$	$\begin{aligned} & 8 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\left\lvert\, \begin{aligned} & \circ \\ & \dot{O} \\ & \dot{\infty} \end{aligned}\right.$	－	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ 1 \end{array}\right\|$	$\begin{aligned} & 8 \\ & 8 \\ & 6 \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} 0 \\ \vdots \\ \vdots \\ \underset{i}{1} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \dot{0} \\ \stackrel{n}{2} \end{array}\right\|$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{8} \end{aligned}$		$\left\|\begin{array}{c} 0 \\ \dot{n} \\ i \end{array}\right\|$	$\left\lvert\, \begin{array}{l\|} \circ \\ 0 \\ \dot{\circ} \\ 1 \end{array}\right.$	\％	$\begin{gathered} 0 \\ N \\ \vdots \\ -1 \\ -1 \end{gathered}$	\％	－	$\begin{aligned} & 8 \\ & \dot{8} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ \underset{1}{n} \\ \stackrel{1}{i} \end{gathered}\right.$	$\left\|\begin{array}{c} 8 \\ 6 \\ i \\ n \end{array}\right\|$	$\begin{array}{l\|l} \infty \\ \infty \\ \dot{\sim} & 8 \\ \dot{\circ} \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\sim}{\ominus} \end{aligned}$
	$\left\|\begin{array}{c} \hat{0} \\ \dot{\sim} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{gathered} \underset{0}{0} \\ \dot{\sim} \end{gathered}$	$\left\|\begin{array}{c} \hat{e} \\ \dot{-} \\ \underset{-}{2} \end{array}\right\|$		$\left.\begin{aligned} & \infty \\ & \dot{\infty} \\ & \dot{\sim} \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l} \infty \\ \dot{\infty} \\ \dot{\square} \end{array}\right\|$		$\begin{array}{l\|l} \stackrel{N}{O} \\ \stackrel{N}{N} \\ \stackrel{N}{N} \end{array}$		$\begin{gathered} N \\ \vdots \\ m \end{gathered}$	$\begin{gathered} \hat{n} \\ \dot{m} \\ m \end{gathered}$	$\begin{aligned} & \grave{N} \\ & \stackrel{y}{j} \\ & m \end{aligned}$	$\begin{gathered} \hat{N} \\ \dot{j} \\ \dot{m} \end{gathered}$	$\left\lvert\, \begin{aligned} & \underset{子}{\dot{\gamma}} \\ & \dot{\gamma} \end{aligned}\right.$	$\begin{aligned} & \underset{寸}{f} \\ & \underset{子}{2} \end{aligned}$	$\begin{aligned} & \underset{子}{\dot{y}} \\ & \underset{子}{2} \end{aligned}$	$\begin{aligned} & \underset{子}{\dot{f}} \\ & \dot{子} \end{aligned}$	－	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{O}} \\ & \hline 1 \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ \underset{\sim}{1} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{c} { }_{0}^{0} \\ \dot{0} \\ \end{array}\right\|$	$\left\|\begin{array}{l} \hat{e} \\ \dot{\sim} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\dot{~}} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\stackrel{\rightharpoonup}{\dot{~}}$	$\stackrel{\rightharpoonup}{\dot{j}}$	$\begin{gathered} N \\ \vdots \\ \dot{m} \end{gathered}$	$\left\|\begin{array}{c} n \\ \vdots \\ \vdots \\ m \end{array}\right\|$	$\begin{aligned} & \grave{N} \\ & \dot{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & \dot{m} \\ & \vdots \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \grave{\infty} \\ & \dot{\gamma} \\ & \underset{子}{2} \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \dot{\gamma} \\ & \dot{y} \end{aligned}$	$\left\lvert\, \begin{aligned} & \dot{\infty} \\ & \dot{q} \end{aligned}\right.$	$\begin{gathered} \underset{f}{\dot{\circ}} \\ \dot{\sim} \end{gathered}$		$\begin{aligned} & \underset{子}{\mathrm{O}} \\ & \underset{\sim}{2} \end{aligned}$
$\begin{aligned} & \sum_{\$}^{4} \\ & \sum_{i} \\ & \sum_{0} \end{aligned}$	$\left\lvert\, \begin{gathered} \mathfrak{n} \\ \underset{子}{0} \\ \mathfrak{g} \end{gathered}\right.$	$\begin{aligned} & \underset{1}{n} \\ & \dot{0} \end{aligned}$	$$		$\begin{aligned} & \underset{\sim}{m} \\ & \underset{6}{2} \end{aligned}$	$\stackrel{n}{n}$			$\begin{array}{c\|c} n \\ & \text { N } \\ \hline \end{array}$	$\begin{gathered} n \\ \mathfrak{q} \end{gathered}$	$\left\lvert\, \begin{gathered} \underset{\sim}{m} \\ \underset{\sim}{2} \end{gathered}\right.$	$\left\|\begin{array}{l} n \\ \\ \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \vdots \\ \vdots \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{\infty} \\ \underset{子}{0} \end{array}\right\|$	$\begin{aligned} & m \\ & \dot{3} \end{aligned}$	$\stackrel{n}{n}$	$\begin{aligned} & n \\ & \vdots \\ & \vdots \end{aligned}$	\xrightarrow{m}	$\begin{aligned} & \mathfrak{m} \\ & \\ & \end{aligned}$		$\left\|\begin{array}{c} n \\ \underset{\sim}{2} \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{m} \\ \dot{0} \end{array}\right\|$	$\begin{aligned} & \mathbf{m} \\ & \underset{\infty}{n} \\ & \hline \end{aligned}$	$\begin{gathered} n \\ \stackrel{n}{n} \\ \underset{n}{2} \end{gathered}$	$\begin{aligned} & \mathrm{M} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{1}{0} \\ \underset{0}{2} \end{gathered}\right.$	$\begin{gathered} m \\ \underset{\infty}{\infty} \end{gathered}$	$$	$\begin{gathered} m \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} m \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{gathered} n \\ 0 \\ - \\ -1 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\sim}{9} \\ \underset{0}{2} \end{gathered}\right.$		$\begin{aligned} & \text { n } \\ & \underset{\sim}{+} \\ & \underset{\sim}{n} \end{aligned}$
	8	$\stackrel{\circ}{\infty}$	$\left\lvert\, \begin{aligned} & \text { n } \\ & \\ & \hline 1 \end{aligned}\right.$	$\underset{\sim}{n} \text { 눙 }$	$\left\|\begin{array}{l} \mathrm{n} \\ 7 \end{array}\right\|$	$\begin{aligned} & \stackrel{1}{2} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\circ}{\circ} & 0 \\ \underset{\sim}{7} & \underset{7}{7} \end{array}$	$\underset{\sim}{\circ} \underset{\sim}{\circ}$	$\stackrel{0}{0}$	$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \underset{-1}{ } \\ & \hline \end{aligned}\right.$	$\stackrel{i}{i}$	뇩	$\stackrel{i}{\stackrel{1}{N}} \mid$	$\stackrel{\substack{\infty \\ \infty \\ \hline-1}}{ }$	$\mid \stackrel{\leftrightarrow}{\circ}$	$\stackrel{\sim}{N}$	$\stackrel{\stackrel{1}{2}}{N}$	\bigcirc	$\underset{\sim}{-1}$	$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\prime} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{gathered} n \\ \underset{i}{n} \\ \hline \end{gathered}\right.$	$\|\stackrel{\stackrel{\rightharpoonup}{n}}{\stackrel{1}{n}}\|$	$\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{0}{1} \\ & \hline \end{aligned}\right.$	$\stackrel{\substack{\infty \\ \infty \\ \underset{1}{2} \\ \hline}}{ }$	$\stackrel{\stackrel{1}{\sim}}{\underset{\sim}{2}}$	$\left\|\begin{array}{l} \mathrm{N} \\ \stackrel{\sim}{1} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \\ -1 \end{array}\right\|$	$\stackrel{\stackrel{i}{\sim}}{\underset{\sim}{2}}$	$\begin{gathered} \stackrel{\sim}{N} \\ \end{gathered}$	$\stackrel{\sim}{N}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\begin{aligned} & 1 \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\mid \stackrel{\circ}{2}$	$\mid \stackrel{i}{N}$		$\stackrel{\leftarrow}{\sim}$
	AlphaEclipse 25_ _-96x16 R/A																																			
			due L səquy／due L pəy \longrightarrow	Width (Pixel Columns)	x Height（Pixel Rows）				LED Pitch	（2 digit code）	$\begin{aligned} & \text { if } \\ & 0 \\ & 0 \\ & \text { ॥ } \\ & \stackrel{\sim}{n} \end{aligned}$																									

Figure 3：AlphaEclipse installation diagram－Part 2

Back-to-back Master/Slave sign connection

1. Open the sign according to "Appendix D: Opening and closing the sign" on page 34.

Connect signal wire

2. Connect the two signs as shown below:

- The Master sign will have a modem or wireless transceiver inside, or the Master sign will be connected to a computer by wire, fiber optic cable, or an external connection box.
- The Slave sign will only be connected to a Master sign.
- A one-line sign does not include a Serial I/O terminal block. Connect RS485+, RS485-, and SHIELD directly to the Serial Port on the controller board. See page 53.

Figure 4: Back-to-back Master/Slave sign connection

Set DIP switches

These are the recommended DIP switch settings for a Master/Slave back-to-back sign connection:

Master sign settings:

Slave sign settings:

Bank 2
Bank 1

NOTE: Signs set up as Master/Slave units can NOT be changed to Master/Master operation by just changing a sign's DIP switches. Doing so could damage a sign. Be sure to disconnect the TEMP/ SYNC wiring so that the Master/Master configuration matches the wiring shown in Figure 5 on page 12.

Back-to-back Master/Master sign connection

1. Open the sign according to "Appendix D: Opening and closing the sign" on page 34.

Connect signal wire

2. Connect the two signs as shown below:

- Each Master sign will have a modem or wireless transceiver inside, or one of the Master signs will be connected to a computer by wire, fiber optic cable, or an external connection box.
- If both Master signs have a modem or a wireless transceiver inside or each sign is connected to an external connection box, then the wire connecting both signs shown below is not necessary.
- A one-line sign does not include a Serial I/O terminal block. Connect RS485+, RS485-, and SHIELD directly to the Serial Port on the controller board. See page 53.

Figure 5: Back-to-back Master/Master sign connection

Set DIP switches

These are the recommended DIP switch settings for a Master/Master back-to-back sign connection:

First Master sign settings:

This allows you to send messages to just the first Master sign if you send messages to sign address 1. (See the AlphaNET User Manual for more information.)

Second Master sign settings:

Bank 2

Serial address

Set DIP switch $2=0 \mathrm{~N}$.

Bank 1

For DIP switches $1 \& 2$, see "Appendix F: Termination" on page 43.

This allows you to send messages to just the second Master sign if you send messages to sign address 2. (See the AlphaNET User

Manual for more information.)

Multiple Master/Slave sign connection

1. Open the sign according to "Appendix D: Opening and closing the sign" on page 34.

Connect signal wire

2. Connect the signs as shown below:

- The Master sign will have a modem or wireless transceiver inside, or the Master sign will be connected to a computer by wire, fiber optic cable, or an external connection box.
- A one-line sign does not include a Serial I/O terminal block. Connect RS485+, RS485-, and SHIELD directly to the Serial Port on the controller board. See page 53.

Figure 6: Multiple Master/Slave sign connection

Set DIP switches

These are the recommended DIP switch settings for Master／Slave multiple sign connection：

Master sign settings：

First Slave sign settings：

Bank 2

1111।11111100
M日月月日月ロム

Bank 1

Master／Slave
Set DIP switch $7=0 \mathrm{~N}$ ．

This makes this a Slave sign．

Last Slave sign settings：

Bank 2

Serial address

Set DIP switches $1 \& 2=0 \mathrm{~N}$ ．
This sets this sign＇s address $=3$ ．
（If this was the 4th sign，then set the
serial address $=4$ ．）

NOTE：Signs set up as Master／Slave units can not be changed to Master／Master operation by just changing a sign＇s DIP switches．Doing so could damage a sign．Be sure to disconnect the TEMP／SYNC wiring so that the Master／Master configuration matches the wiring shown in Figure 7 on page 16.

Multiple Master/Master signs

1. Open the sign according to "Appendix D: Opening and closing the sign" on page 34.

Connect signal wire

2. Connect the signs as shown below:

- Each Master sign will have a modem or wireless transceiver inside, or one of the Master signs will be connected to a computer by wire, fiber optic cable, or an external connection box.
- If all Master signs have a modem or a wireless transceiver inside or each sign is connected to an external connection box, then the wire connecting the signs shown below is not necessary.
- A one-line sign does not include a Serial I/O terminal block. Connect RS485+, RS485-, and SHIELD directly to the Serial Port on the controller board. See page 53.

Set DIP switches

These are the recommended DIP switch settings for Master/Master multiple sign connection:
First Master sign settings:

Second Master sign settings:

Bank 2
 111111111110

Serial address

Set DIP switch $2=0 \mathrm{~N}$.

Bank 1

$$
\text { Set DIP switch } 7 \text { = 0FF. }
$$

Termination
For DIP switches 1 \& 2, see
"Appendix F: Termination" on page 43.

Last Master sign settings:

Wired (RS232) computer-to-sign connection

1. Open the sign according to "Appendix D: Opening and closing the sign" on page 34.
2. Connect the computer to the sign as shown below:

NOTE: A one-line sign does not include a Serial I/O terminal block. Connect RS232 TxD, RS232 RxD, and GND directly to the Serial Port on the controller board.

SERIAL PORT

Figure 8: Wired RS232 computer-to-sign connection

Wired (RS485) computer-to-sign connection

1. Open the sign according to "Appendix D: Opening and closing the sign" on page 34.
2. Connect the computer to the sign as shown below:

NOTE: AlphaEclipse signs that are connected using RS485 must be properly terminated in order for the signs to operate. See "Appendix F: Termination" on page 43 for more information.
NOTE: The Converter Box III cannot be located outdoors.
NOTE: A one-line sign does not include a Serial I/O terminal block. Connect RS485+, RS485-, and SHIELD directly to the Serial Port on the controller board. See page 53.
NOTE: Adaptive standard RS485 outdoor plenum 2 conductor shielded cable (pn 7122-0284) is the only RS485 cable that works successfully with outdoor displays. Category 3 cable, Category 5 cable, and other cables do not work reliably and are not approved by Adaptive for use.

Overview

Figure 9: Wired RS485 computer-to-sign connection

Fiber optic computer-to-sign connection

See also "Fiber optic modem option" on page 41.

1. Open the sign according to "Appendix D: Opening and closing the sign" on page 34.
2. Connect the computer to the sign as shown below:

NOTE: Sign networks that use fiber optic cable should only be installed by a qualified fiber optic technician.

Figure 11: Ethernet computer-to-sign connection

Modem computer-to-sign connection

Internal sign connections

Figure 12: Modem computer-to-sign connection

Wireless computer-to-sign connection

" on page 39.
Open the sign according to "Appendix D: Opening and closing the sign" on page 34.
Connect the computer to the sign as shown below:

Figure 13: Wireless computer-to-sign connection

External connection box computer-to-sign connection

When a sign is not permanently connected to a computer, use this option to create a temporary RS485 connection to a computer:

Open the sign according to "Appendix D: Opening and closing the sign" on page 34.
Connect the computer to the sign as shown below:
A one-line sign does not include a Serial I/O terminal block. Connect RS485+, RS485-, and SHIELD directly to the serial port on the controller board. See page 53.

connections

Figure 14: External connection box

Electrical installation

Electrical installation should only be attempted by a qualified electrician. Electrical connection must comply with all applicable national and local codes.

Guidelines for electrical installation

- Inspect all internal sign cabling for proper connection and seating.
- All power wiring must be from circuit breaker-protected lines.
- A two-pole disconnect device must be installed in the building wiring for each branch circuit supplying the sign.
- The sign must be properly earth grounded. The sign's support structure should NOT be used as ground.
- Run separate conduits for signal wires (for example, RS232, RS485) and for power wires.
- All electrical connections must be watertight.
- Use minimum $85^{\circ} \mathrm{C}$ copper wire only.

Utiliser uniquement un fil en cuivre pouvant supporter $85^{\circ} \mathrm{C}$ minimum.

Open the sign according to "Appendix D: Opening and closing the sign" on page 34.

Connect power to the sign

Connect the sign to an appropriate power source:
For an AlphaEclipse 2500 sign, see Table 3 on page 50.
For an AlphaEclipse 2600 sign, see Table 4 on page 51.

Ground the sign

3. The sign must be properly earth grounded. The sign's support structure should not be used as ground.

Test the exhaust fans

4. Apply power to the sign.
5. Push 1 on the sign's internal power switch.
6. If the exhaust fans are not already on, press the fan test button which is located on the sign's internal power switch. All the exhaust fans should start up.

Close the sign

7. See "Appendix D: Opening and closing the sign" on page 34.

Appendix

Appendix A: Sign description

Outside view

Inside view

I	Signal I/O terminal block	Used to connect an RS232 or RS485 network to the sign: A one-line sign does not include a Serial I/O terminal block. Instead, connections are made directly to the Serial Port on the controller board. See page 53.
J	Photocell	Used to dim the sign's LEDs.
K	Signal conduit opening	Access for RS232/RS485 communication signals and the wireless transceiver option. Must be sealed with weather-proof conduit during installation.
	Controller board	Controls sign operation.
L	Turbo Extender board	Plugs into the Controller board and sends data to the sign's LED boards. The Turbo Extender board has A terminal-type connector labeled TEMP/SYNC PORT for the temperature probe and RS485 Master/Slave sign networks.
M	Modem kit, 120V (option)	Allows sending messages to sign via a modem (option).
	Modem kit, 240V (option)	
	Transceiver kit, 120V (option)	Allows sending messages to sign via wireless transmitter (option)10.
	Transceiver kit, 240V (option)	
	Fiber optic modem (option)	Allows sending messages to sign via fiber optic mini-modems (option).
N	Power switch	Used to disconnect sign from power source. An intermittent switch on this assembly allows exhaust fans to be turned in order to test their operation.
0	Power supply terminal block	Used to connect the sign to an appropriate power supply. Two surge suppressors (circled below) are used per sign.
P	Power conduit opening	Access for electrical power. Must be sealed with weather-proof conduit during installation.
0	240 V modem transformer and fuses (option)	Used as part of the 240V modem option.

Appendix C: Networking signs

NOTE: Sign networks that use fiber optic cable should only be installed by a qualified fiber optic technician.
NOTE: In order to display messages on an AlphaEclipse sign, a sign must be connected to a computer that has sign messaging software, like AlphaNET software, installed.

Computer-to-sign communication methods

There are a number of ways to connect an AlphaEclipse sign to a computer:

- Wired (RS232, RS485)
- Fiber optic
- Modem
- Wireless
- External connection box

Distance from computer to sign (feet)	Indoor use					Outdoor use				
	Networking method									
	Wired			Modem ${ }^{1}$	Wireless ${ }^{1,2}$	Wired			Modem ${ }^{1}$	Wireless ${ }^{\mathbf{1 , 3}}$
	RS232	RS485	Fiber optic			RS232	RS485	Fiber optic		
up to 50	Yes	Yes	Yes ${ }^{4}$	Yes	Yes	Yes	Yes	Yes ${ }^{4}$	Yes	Yes
50 to 1000	No	Yes	Yes ${ }^{4}$	Yes	Yes	No	Yes	Yes ${ }^{4}$	Yes	Yes
1000-4000	No	Yes	Yes ${ }^{4}$	Yes	Yes	No	Yes	Yes ${ }^{4}$	Yes	Yes
4000+	No	No	Yes ${ }^{4}$	Yes	No	No	No	Yes ${ }^{4}$	Yes	Yes
NOTES: ${ }^{1}$ Installed and con ${ }^{2}$ Maximum indoo environment, inclu ${ }^{3}$ Maximum range environment, inclu ${ }^{4}$ For a fiber optic	gured at ange of ing obst a Locus ing obst	factory ocus OS tions an S2400-2 tions and	-232 ctrical ireless ctrical um di	ess trans ference. nsceiver is ference. ce betwee	iver is about about 10,000 the sign and	00 feet. (about mputer	ual oper miles). A miles (range opera 000 fee	ends on I range de	nds on local

Sign-to-sign communication methods

NOTE: Each sign in a network should have its own unique serial address. To set a sign address, see "Sign operation settings (Bank 1 and Bank 2 DIP switches)" on page 46.
Also, there are several ways to interconnect two or more AlphaEclipse signs together:

- Wired (RS485)
- Modem
- Wireless

Networking method		Description
Wired	Master/Master	Signs connected this way can each display a unique message. One of the signs must be connected to a computer which is used to create and send messages. NOTES: - Messaging - a message can be displayed on all the signs in a Master/Master network by sending the message to sign address " 00 ". Also, if each sign in a Master/Master network has a unique serial address (for example, " 01 ", " 02 ", and so on), then a different message can be sent to and displayed on each sign. - Temperature - to display the temperature on the signs in a Master/Master network, a temperature probe must be connected to each sign. If a sign attempts to display the temperature and does not have a temperature probe attached, the sign will display "ERR" in place of the temperature. - Time - in Master/Master mode, the time is synchronized whenever a message is sent using the AlphaNET software.
	Master/Slave	Signs connected this way display the same message at the same time. This is called simultaneous messaging and is often used when signs are mounted back-to-back. The Master sign must be connected to a computer. The computer is used to create and send messages. NOTES: - Messaging — a message will be displayed simultaneously on all the signs in a Master/Slave network by sending the message to sign address " 00 " or to all the sign addresses ("01", "02", and so on). - Temperature - to display the temperature on the signs in a Master/Slave network, a temperature probe must be connected to the Master sign. - Time - in Master/Slave mode, the time is synchronized at the top of every hour and also whenever a message is sent using the AlphaNET software.
Modem (option)		Each sign must be equipped with the internal receiving modem which requires a dedicated telephone line per sign. Messages are sent to the sign from a computer that is connected to a transmitting modem.
Wireless (option)		Each sign must be equipped with an internal wireless transceiver. Messages are sent to the sign from a computer that is connected to a wireless transceiver.

Sign network design

- Signs that are networked using RS485 should be "daisy chained" or connected one sign after the other. "Star" type network connections should not be used.

- In multi-sign networks, set a unique serial address for each sign. However, don't use serial address 0 . For example, set the serial address $=1$ for the first sign, set the serial address $=2$ for the second sign, and so on. See "Sign operation settings (Bank 1 and Bank 2 DIP switches)" on page 46.

NOTE: Do NOT attempt to open the door on a sign in windy conditions because if winds are sufficiently strong, the door could be damaged or blown off the sign.

1. Disconnect power from the sign.

Unlock and open the door

2. Use a 5/32-inch hex key tool to open the locking latches which are located along the lower edge of the sign's front.

3. Stand away from the front of the unit. Then lift the door upward. Swing each safety bar up and attach it to the bolt inside the sign using the supplied wing nut. (See Figure 15 on page 35.)

Raise the LED boards

4. Remove the rail screws (circled below) at the bottom of each internal vertical rail. The number of rail screws varies with the size of the sign:

5. Carefully lift the LED boards up by placing your fingers in the mounting rail holes - not underneath an LED board.

6. Unfasten each red prop rod from underneath the LED boards. Then place each rod in its fastener hole:

Figure 15: Safety bar and prop rod
7. After the LED boards are raised and all the prop rods are fastened, turn off the sign's internal power switch by pressing 0 on the switch.

Closing the sign

1. Push $\mathbf{1}$ on the sign's internal power switch.
2. Raise each red prop rod out of its hole and fasten each rod to a clip underneath the LED boards. NOTE: If a prop rod is not fastened, it could swing free and damage internal sign components.
3. Lower the LED boards.
4. Refasten rail screws to the internal vertical rails.
5. Unfasten each safety bar and place inside the sign.
6. Lower the sign's door.
7. Using the 5/32-inch hex key tool, turn each locking latch to lock the door shut.
8. Apply power to the sign.

Temperature probe option

Mounting guidelines

- A good place to locate the temperature probe is underneath the eaves of a protected overhang. Choose a location where air movement is not restricted by nearby walls or other obstructions. Mount the temperature probe housing so that convection currents, or rising hot air flows, are not blocked by the mounting plates.
- A location on the north side of a building, at least 6 feet off the ground, or other large structure will afford protection from the afternoon sun. Shield the probe from the effect of the direct sun, reflected heat, or any nearby sources of heat, such as chimneys, vents, or HVAC ducts.
- A light-colored background is preferable to a dark-colored mounting background. A location above vegetation is preferable to a location above asphalt or blacktop.

Installation

1. Mount the temperature probe vertically using the mounting plate on each side of the probe. The temperature probe can be mounted on either a flat or a curved surface.
2. Run the temperature probe cable into the sign through the signal wire conduit opening. Connect the temperature probe cable to the TEMP/SYNC PORT on the Turbo Extender board (see "Appendix J: Controller board" on page 53):

TEMP/SYNC PORT
(on Turbo Extender board)

Mount vertically to allow hot air to flow under the unit.

Figure 16: Temperature probe installation

Modem option

This option allows messages to be sent from a computer that has a transmitting modem to a sign that has a receiving modem installed. Each modem must be attached to its own phone line.

NOTE: The modem option only includes the installation of a receiving modem in a sign. The purchase and installation of the transmitting modem, which is attached to a computer, is the responsibility of the sign buyer.
The US Robotics 56 K modem is used as the receiving modem. This brand is also recommended as the transmitting modem.

Figure 17: US Robotics 56K modem

Receiving modem

The receiving modem is installed inside a sign at the factory. For more information, see "Modem option" on page 38.

- Receiving modem DIP switch settings - The eight DIP switches on the US Robotics receiving modem are set as follows:

1	2	3	4	5	6	7	8
On	Off	On	On	Off	Off	Off	On
Modem ignores DTR	Verbal (word) result codes	Display result codes	Do not Echo offline commands	Auto answer on	Carrier detect on	Load userdefined configuration from memory.	Smart mode (recognize AT command set)

- Receiving modem internal configuration - The following AT command is sent to the modem with a program like HyperTerminal:

Transmitting modem

The US Robotics 56 K modem is recommended for use as the transmitting modem. This modem does not require any special setup for sending messages to a sign.

Wireless transceiver option

For this option, one wireless transceiver (the "master") is connected to a computer and sends messages to another transceiver (the "remote") inside a sign. Both transceivers require antennas and both are programmed at the factory.

On the remote transceiver, this antenna would be mounted outside of the sign. See "Antenna installation" on page 40.

Figure 18: Locus OS2400-232 wireless transceiver

Transceiver setup

NOTE: This information is based on Adaptive document number OTI00313A.
NOTE: For more information about the Locus OS2400-232, see the product manual OS2400 Radio Modem User's Manual or visit the company's web site: http:/ /www.overairsolutions.com.
Using the OverAir Solutions software from Locus, the following parameters were set for the master and the remote transceivers:

Parameter	Master transceiver (connected to computer)	Remote transceiver (installed inside sign)
Network Name	Network 1	
Network Type	Point to point	
Network Channel	Master	Receive
Radio Name	9600	9600
Baud Rate	None	None
Parity	8	8
Data Bits	1	1
Stop Bits	None	None
Handshaking	Max	Max
Transmit Power		

Antenna installation

Follow these guidelines for mounting the remote transceiver antenna:

- Install the antenna and bracket on a support structure other than the sign or the sign's mounting brackets. Do NOT drill a hole in the sign enclosure.
- Install the antenna in a location that will allow optimum line-of-sight transmission and reception of signals between the sending transceiver and the antenna. Do not install the antenna so that the sign is between the sending transceiver and the receiving antenna.
- Install the antenna in an unobstructed area, keeping adequate clearance from any objects that could block the signal.
- Install the antenna in a more elevated location than the sign, and, if possible, keep it vertical.

Mount the sign as shown:

Fiber optic modem option

Description

The fiber optic modem option allows messages to be sent from a computer to a sign at distances up to 2 miles. Fiber optic transmissions are not subject to electrical noise, ensure data security because eavesdropping is virtually impossible, and electrically isolate a computer from a sign so there is no spark hazard.

Two mini modems are necessary:

- a mini modem inside the sign connected with the 1051-9019 adapter, and
- a mini modem connected to the computer which will be used to send messages to the sign. The 1051-9019 adapter is not used. However, a RS232 cable (DB25-to-DB9 or DB25-to-DB25) is needed to connect this mini modem to a computer COM (RS232) port.

Figure 19: Black Box ME605A async fiber optic mini modem (left) and 1051-9019 adapter (right)

Specifications

Table 1: Fiber optic mini modem specifications

Data rate:	Up to 19.2 Kbps
Pulse width distortion:	Less than 25%
Transmission line:	Duplex optical cable
Transmission mode:	Asynchronous, full- or half-duplex
Transmission controls:	Carrier constantly on or controlled by RTS
Optical output levels:	-28 dBm into $100 / 140$ fiber -32 dBm into $62.5 / 125$ fiber -36 dBm into $50 / 125$ fiber
Receiver sensitivity:	-45 dBm
Operating wavelength:	850 nm

Table 1: Fiber optic mini modem specifications

Operating range:	Maximum range is 2 miles (3 km) of continuous fiber with the following fibers: - $100 / 140$ fiber with attenuation of $4 \mathrm{~dB} / \mathrm{km}$ - $62.5 / 125$ fiber with attenuation of $3.5 \mathrm{~dB} / \mathrm{km}$ - $50 / 125$ fiber with attenuation of $3 \mathrm{~dB} / \mathrm{km}$
Indicators:	One power LED
Terminal interface:	One ITU V.24/EIA RS232C integral DB25 connector
Fiber optic interface:	Two ST connectors
Operating conditions:	- Temperature - 32 to $122^{\circ} \mathrm{F}\left(0\right.$ to $50^{\circ} \mathrm{C}$) - Humidity - up to 90%, non condensing
Size:	$0.7 \times 2.1 \times 3.1$ in ($1.8 \times 5.3 \times 7.8 \mathrm{~cm}$)
Weight:	$1.30 \mathrm{z}(36 \mathrm{~g})$

Table 2: Fiber optic modem setup switches

Switch	Function	Position	Factory setting
CARR	Selects carrier constantly on or controlled by RTS.	- ON - carrier constantly on - CL - carrier controlled by RTS	ON
DLY	Selects RTS/CTS delay	- 2 msec - 15 msec	2 msec
DCE/DTE	Selects DCE or DTE	- DTE - DCE	DCE

Location of termination DIP switches

A sign must be correctly terminated in order to work properly. Termination is either ON or OFF. A pair of DIP switches on the sign's Controller board are used to terminate a sign:

When DIP switches 1 and 2 are both OFF, sign termination is OFF.

Figure 20: Location of termination DIP switches

How to set the termination DIP switches

When the sign receives messages from a computer connected to the sign using RS485 wiring
In this case, a Converter Box III is used to connect a computer to a sign. To terminate a Converter Box III, set the switch on the back of this unit to "Terminated":

Two sign network:

Three sign network:

When the sign receives messages from a computer connected to the sign using fiber optic cable
One sign network:

When the sign receives messages from a computer via a modem or wireless transceiver
One sign network:

If there is a modem or wireless transceiver in each sign, then set termination to ON in each sign.

Two sign network:

Three sign network:

DIP switch locations

DIP switches are used to set various sign parameters. DIP switches are located on the Controller board: Bank 1, Bank 2, and Bank 3:

Figure 21: DIP switch locations

Sign operation settings (Bank 1 and Bank 2 DIP switches)

Sign size settings (Bank 3 DIP switches)

Using AlphaNET software to set DIP switches

AlphaNET software version 2.0 .3 and greater can be used to set the Bank 1, 2, or 3 DIP switches explained previously. Version 2.0.3 is documented here; your screens may appear different.

1. To do this, select the AlphaNET Diagnostics software:

2. Select Configure Sign (Advanced) $>$ Select Address:

3. Select one or more of the available options (Set Sign Size, Set Serial Address, and so on) and click on Send:

EMI compliance

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with installation guidelines, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Temperature protection

In order to protect itself from damage, a sign will automatically turn on its exhaust fans and dim or turn off its LEDs when the sign reaches a predetermined internal temperature.

Internal sign temperature:	$\begin{aligned} & <30^{\circ} \mathrm{C} \\ & \left(86^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 30^{\circ}-49^{\circ} \mathrm{C} \\ \left(86^{\circ}-120^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 50^{\circ}-70^{\circ} \mathrm{C} \\ \left(122^{\circ}-158^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 71^{\circ}-81^{\circ} \mathrm{C} \\ \left(160^{\circ}-178^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & 82^{\circ} \mathrm{C} \text { or greater } \\ & \left(180^{\circ} \mathrm{F}\right) \end{aligned}$
LEDs:	Normal brightness		Dim ${ }^{1}$	$0 \mathrm{ff}^{2}$	Off ${ }^{3}$
Controller board:	On				
Power supplies:	On				
Exhaust fans: ${ }^{4}$	Off	On			
NOTES: ${ }^{1}$ Between $50^{\circ}-60^{\circ} \mathrm{C}\left(122^{\circ}-140^{\circ} \mathrm{F}\right)$, LED brightness can decrease between $62.5 \%-100 \%$ of normal, depending on display load. Between $60^{\circ}-65^{\circ} \mathrm{C}\left(140^{\circ}-149^{\circ} \mathrm{F}\right)$, LED brightness can decrease between $50 \%-87.5 \%$ of normal, depending on display load. Between $65^{\circ}-70^{\circ} \mathrm{C}\left(149^{\circ}-158^{\circ} \mathrm{F}\right)$, LED brightness can decrease between $37.5 \%-75 \%$ of normal, depending on display load. (Display load means the number of LEDs that are on. For example, a graphic that lights up most of a sign's LEDs will have more of a display load than a simple text message that lights up only some LEDs.) ${ }^{2}$ When the LEDs are turned off because the sign is too hot, two LEDs in the left most corner will remain on to indicate a thermal shutdown. ${ }^{3}$ All LEDs will be off. ${ }^{4}$ At or above $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$, the exhaust fans are switched on by the exhaust fan thermostat. If the temperature drops to $20^{\circ} \mathrm{C}\left(67^{\circ} \mathrm{F}\right)$, then the exhaust fans are turned off.					

Technical specifications

AlphaEclipse 2500 sign
Table 3: AlphaEclipse 2500 sign technical specifications

AlphaEclipse 2600 sign

Table 4: AlphaEclipse 2600 sign technical specifications

IR Message Loader with an external connection box

- See the IR Message Loader Instructions available on our Web site at http:/ / www.adaptivedisplays.com for more information.

Computer with an external connection box

Description

LED row numbering

